
通常把二極管從正向導通轉為反向截止所經過的轉換過程稱為反向恢復過程。其中tS稱為存儲時間,tt稱為渡越時間,tre=ts+tt稱為反向恢復時間。由于反向恢復時間的存在,使二極管的開關速度受到限制。
電荷存儲效應產生上述現象的原因是由于二極管外加正向電壓VF時,載流子不斷擴散而存儲的結果。當外加正向電壓時P區空穴向N區擴散,N區電子向P區擴散,這樣,不僅使勢壘區(耗盡區)變窄,而且使載流子有相當數量的存儲,在P區內存儲了電子,而在N區內存儲了空穴 ,它們都是非平衡少數載流。
空穴由P區擴散到N區后,并不是立即與N區中的電子復合而消失,而是在一定的路程LP(擴散長度)內,一方面繼續擴散,一方面與電子復合消失,這樣就會在LP范圍內存儲一定數量的空穴,并建立起一定空穴濃度分布,靠近結邊緣的濃度,離結越遠,濃度越小 。正向電流越大,存儲的空穴數目越多,濃度分布的梯度也越大。電子擴散到P區的情況也類似。
我們把正向導通時,非平衡少數載流子積累的現象叫做電荷存儲效應。
當輸入電壓突然由+VF變為-VR時P區存儲的電子和N區存儲的空穴不會馬上消失,但它們將通過下列兩個途徑逐漸減少:
在反向電場作用下,P區電子被拉回N區,N區空穴被拉回P區,形成反向漂移電流IR;
與多數載流子復合。
在這些存儲電荷消失之前,PN結仍處于正向偏置,即勢壘區仍然很窄,PN結的電阻仍很小,與RL相比可以忽略,所以此時反向電流IR=(VR+VD)/RL。VD表示PN結兩端的正向壓降,一般 VR>>VD,即 IR=VR/RL。在這段期間,IR基本上保持不變,主要由VR和RL所決定。經過時間ts后P區和N區所存儲的電荷已顯著減小,勢壘區逐漸變寬,反向電流IR逐漸減小到正常反向飽和電流的數值,經過時間tt,二極管轉為截止。
由上可知,二極管在開關轉換過程中出現的反向恢復過程,實質上由于電荷存儲效應引起的,反向恢復時間就是存儲電荷消失所需要的時間。
二極管和一般開關的不同在于,“開”與“關”由所加電壓的極性決定,而且“開”態有微小的壓降V f,“關”態有微小的電流i0。當電壓由正向變為反向時,電流并不立刻成為(- i0),而是在一段時間ts 內,反向電流始終很大,二極管并不關斷。
經過ts后,反向電流才逐漸變小,再經過tf 時間,二極管的電流才成為(- i0),ts 稱為儲存時間,tf 稱為下降時間。tr= ts+ tf 稱為反向恢復時間,以上過程稱為反向恢復過程。這實際上是由電荷存儲效應引起的,反向恢復時間就是存儲電荷耗盡所需要的時間。該過程使二極管不能在快速連續脈沖下當做開關使用。如果反向脈沖的持續時間比tr 短,則二極管在正、反向都可導通,起不到開關作用。
(本網站部分素材來自網絡,如果本網站展示信息侵犯媒體或個人的知識產權或其他合法權益,請及時通知我們,我們立即予以刪除。)